Learn How to Code
  • Welcome
  • Foundations
    • Introduction
      • Becoming a web developer
      • Motivation and mindset
      • Join a supportive community
      • How does the web work?
    • Requirements
      • Prerequisites
      • Text editors
      • Command line basics
      • Setting up Git
      • Setting up Node
    • Git
      • Git basics
      • Project: Practicing Git
    • Frontend
      • HTML and CSS
      • Developer Tools
      • Project: Create a web page
    • JavaScript
      • Strings and Conditionals
      • Using Developer Tools
      • Functions
      • Problem solving
      • Project: Rock paper scissors
      • Writing clean code
      • Arrays and Loops
      • The DOM
      • Project: Etch-A-Sketch
      • Objects and More Arrays
      • Project: Calculator
    • Backend
      • Frameworks
    • Next steps
  • Deep dives
    • Computer Science
      • Pseudocode and algorithms
      • Recursion and algorithms
        • Project: Fibs and sorting
        • More on algorithms
        • Big O
        • Project: Practicing Big O
      • Data structures
        • Maps, Stacks and Queues
        • Project: Stacks and Queues
        • Nodes, Linked Lists and Trees
        • Project: Linked Lists
        • Project: Trees
        • Next steps
    • Databases
      • Databases and SQL
      • Project: SQL Zoo
    • Design / UX
      • Fonts and typography
      • Grids
      • Project: Teardown
      • Responsive design
      • Project: Mobile friendly
      • CSS frameworks
      • Project: Bootstrapping
    • HTML / CSS
      • HTML Basics
        • Linking
        • Images and media
        • Project: Embedding media
        • HTML5
        • Tables
        • Lists
        • Forms
        • Project: Make a form
      • CSS Basics
        • Box model
        • Floats and positioning
        • Flexbox
        • Grids
        • Project: Breaking news
        • Best practices
        • Backgrounds and gradients
        • Project: One more thing
        • CSS3
        • Preprocessors
        • Project: Your own framework
      • Next steps
    • JavaScript
      • Refresher
      • Organization
      • Objects and constructors
      • Project: Library
      • Factory functions and module patterns
      • Project: Tic Tac Toe
      • Classes
      • ES6 Modules
      • Project: Restaurant
      • Object Oriented Programming
      • Project: Todo list
      • Linting
      • Menus and sliders
      • Forms
      • ES6 features
      • JSON
      • Callbacks and promises
      • Using APIs
      • Async and Await
      • Project: Weather
      • Testing
      • Project: Testing 1-2-3
      • Advanced Testing
      • Project: Battleship
      • Backends
      • Project: Where's Waldo?
      • Project: All-Star
      • Next steps
    • NodeJS
      • Project: Going to school
      • Project: Passing the test
      • Express
        • Templates and middleware
        • CRUD and MVC
        • Project: Message board
        • Routes
        • Displaying data
        • Forms and deployment
        • Project: Inventory
      • Authentication
      • Security
      • Project: Clubhouse
      • APIs
      • Securing an API
      • Project: Blog
      • Testing
      • Testing with a database
      • Project: Social network
    • React
      • Props and State
      • Render lists and handle inputs
      • Project: CV
      • Lifecycle methods
      • Hooks
      • Project: Memory card
      • Router
      • Project: Shopping cart
      • Advanced concepts
    • Ruby
      • Installation
      • Data types
      • Variables
      • Input and Output
      • Conditionals
      • Loops
      • Arrays
      • Hashes
      • Methods
      • Enumerables
      • More enumerables
      • Nested collections
      • Blocks
      • Pattern matching
      • Debugging
      • Project: Caesar cipher
      • Project: Substrings
      • Project: Stock picker
      • Project: Bubble sort
      • Object oriented programming
      • Project: Tic Tac Toe
      • Project: Mastermind
      • Serialization
      • Project: Event manager
      • Project: Hangman
      • Computer Science
        • Recursion
        • Project: Merge Sort
        • Data structures and algorithms
        • Project: Linked Lists
        • Project: Binary Search Trees
        • Project: Knight Travails
      • Testing
      • RSpec
      • Project: Four in a row
      • Git
      • Project: Open Source
      • Project: Chess
      • Next steps
    • Ruby on Rails
      • Using Heroku
      • Installing Rails
      • Basics
        • Routing
        • Controllers
        • Views
        • Asset pipeline
        • Deployment
        • Project: Blog
      • Active Record
        • Project: Upvote
      • Forms
        • Cookies, sessions, and authentication
        • Project: Password
      • Advanced forms and Active Record
        • Associations
        • Project: Private Events
        • Callbacks
        • Menus, helpers and nested forms
        • Project: Ticket agent
      • APIs
        • External APIs
        • Project: Animals
        • Project: Photo widget
      • Mailers
        • Project: Confirmation
      • Advanced topics
        • Action Cable
      • Project: Social network
      • Next steps
  • Getting hired
    • Preparing to find a job
      • Plan a strategy
      • What companies want
      • Get yourself together
      • How to prepare
      • Project: Make your website
    • Applying and interviewing
      • Qualifying leads
      • Project: Make your resume
      • Applying for jobs
      • Preparing for an interview
      • Handling an offer
      • Final words
  • Maintained by
    • wbnns
  • License
    • CC BY-NC-SA 4.0 © 2022
Powered by GitBook
On this page
  • Introduction
  • Structure of a Linked List
  • Assignment
  • Extra credit
  1. Deep dives
  2. Ruby
  3. Computer Science

Project: Linked Lists

Learn how to build a linked list.

PreviousData structures and algorithmsNextProject: Binary Search Trees

Last updated 4 years ago

Introduction

In Computer Science one of the most basic and fundamental data structures is the linked list, which functions similarly to an array. The principal benefit of a linked list over a conventional array is that the list elements can easily be inserted or removed without reallocation of any other elements.

In some programming languages the size of an array is a concern and one of the ways to overcome that problem and allow dynamically allocated data is using linked lists.

Luckily in Ruby arrays aren't limited to a certain size, so you don't have to think about overcoming that limitation.

So if array size is not a limitation in Ruby, are linked lists really necessary? The short answer to that is no; however, it's the simplest of the dynamic data structures and it will give you a solid foundation, so you can understand more complex data structures like graphs and binary trees with more ease.

Structure of a Linked List

A linked list is a linear collection of data elements called nodes that "point" to the next node by means of a pointer.

Each node holds a single element of data and a link or pointer to the next node in the list.

A head node is the first node in the list, a tail node is the last node in the list. Below is a basic representation of a linked list:

[ NODE(head) ] -> [ NODE ] -> [ NODE(tail) ] -> nil

For a more thorough explanation, use these resources:

Assignment

You will need two classes:

  1. LinkedList class, which will represent the full list.

  2. Node class, containing a #value method and a link to the #next_node, set both as nil by default.

Build the following methods in your linked list class:

  1. #append(value) adds a new node containing value to the end of the list

  2. #prepend(value) adds a new node containing value to the start of the list

  3. #size returns the total number of nodes in the list

  4. #head returns the first node in the list

  5. #tail returns the last node in the list

  6. #at(index) returns the node at the given index

  7. #pop removes the last element from the list

  8. #contains?(value) returns true if the passed in value is in the list and otherwise returns false.

  9. #find(value) returns the index of the node containing value, or nil if not found.

  10. #to_s represent your LinkedList objects as strings, so you can print them out and preview them in the console.

    The format should be: ( value ) -> ( value ) -> ( value ) -> nil

Extra credit

  1. #insert_at(value, index) that inserts a new node with the provided value at the given index.

  2. #remove_at(index) that removes the node at the given index.

Extra credit tip: When you insert or remove a node, consider how it will affect the existing nodes. Some of the nodes will need their #next_node link updated.

Linked Lists in Plain English
Linked Lists, Ruby's Missing Data Structure
A more verbose explanation with plenty of diagrams