Learn How to Code
  • Welcome
  • Foundations
    • Introduction
      • Becoming a web developer
      • Motivation and mindset
      • Join a supportive community
      • How does the web work?
    • Requirements
      • Prerequisites
      • Text editors
      • Command line basics
      • Setting up Git
      • Setting up Node
    • Git
      • Git basics
      • Project: Practicing Git
    • Frontend
      • HTML and CSS
      • Developer Tools
      • Project: Create a web page
    • JavaScript
      • Strings and Conditionals
      • Using Developer Tools
      • Functions
      • Problem solving
      • Project: Rock paper scissors
      • Writing clean code
      • Arrays and Loops
      • The DOM
      • Project: Etch-A-Sketch
      • Objects and More Arrays
      • Project: Calculator
    • Backend
      • Frameworks
    • Next steps
  • Deep dives
    • Computer Science
      • Pseudocode and algorithms
      • Recursion and algorithms
        • Project: Fibs and sorting
        • More on algorithms
        • Big O
        • Project: Practicing Big O
      • Data structures
        • Maps, Stacks and Queues
        • Project: Stacks and Queues
        • Nodes, Linked Lists and Trees
        • Project: Linked Lists
        • Project: Trees
        • Next steps
    • Databases
      • Databases and SQL
      • Project: SQL Zoo
    • Design / UX
      • Fonts and typography
      • Grids
      • Project: Teardown
      • Responsive design
      • Project: Mobile friendly
      • CSS frameworks
      • Project: Bootstrapping
    • HTML / CSS
      • HTML Basics
        • Linking
        • Images and media
        • Project: Embedding media
        • HTML5
        • Tables
        • Lists
        • Forms
        • Project: Make a form
      • CSS Basics
        • Box model
        • Floats and positioning
        • Flexbox
        • Grids
        • Project: Breaking news
        • Best practices
        • Backgrounds and gradients
        • Project: One more thing
        • CSS3
        • Preprocessors
        • Project: Your own framework
      • Next steps
    • JavaScript
      • Refresher
      • Organization
      • Objects and constructors
      • Project: Library
      • Factory functions and module patterns
      • Project: Tic Tac Toe
      • Classes
      • ES6 Modules
      • Project: Restaurant
      • Object Oriented Programming
      • Project: Todo list
      • Linting
      • Menus and sliders
      • Forms
      • ES6 features
      • JSON
      • Callbacks and promises
      • Using APIs
      • Async and Await
      • Project: Weather
      • Testing
      • Project: Testing 1-2-3
      • Advanced Testing
      • Project: Battleship
      • Backends
      • Project: Where's Waldo?
      • Project: All-Star
      • Next steps
    • NodeJS
      • Project: Going to school
      • Project: Passing the test
      • Express
        • Templates and middleware
        • CRUD and MVC
        • Project: Message board
        • Routes
        • Displaying data
        • Forms and deployment
        • Project: Inventory
      • Authentication
      • Security
      • Project: Clubhouse
      • APIs
      • Securing an API
      • Project: Blog
      • Testing
      • Testing with a database
      • Project: Social network
    • React
      • Props and State
      • Render lists and handle inputs
      • Project: CV
      • Lifecycle methods
      • Hooks
      • Project: Memory card
      • Router
      • Project: Shopping cart
      • Advanced concepts
    • Ruby
      • Installation
      • Data types
      • Variables
      • Input and Output
      • Conditionals
      • Loops
      • Arrays
      • Hashes
      • Methods
      • Enumerables
      • More enumerables
      • Nested collections
      • Blocks
      • Pattern matching
      • Debugging
      • Project: Caesar cipher
      • Project: Substrings
      • Project: Stock picker
      • Project: Bubble sort
      • Object oriented programming
      • Project: Tic Tac Toe
      • Project: Mastermind
      • Serialization
      • Project: Event manager
      • Project: Hangman
      • Computer Science
        • Recursion
        • Project: Merge Sort
        • Data structures and algorithms
        • Project: Linked Lists
        • Project: Binary Search Trees
        • Project: Knight Travails
      • Testing
      • RSpec
      • Project: Four in a row
      • Git
      • Project: Open Source
      • Project: Chess
      • Next steps
    • Ruby on Rails
      • Using Heroku
      • Installing Rails
      • Basics
        • Routing
        • Controllers
        • Views
        • Asset pipeline
        • Deployment
        • Project: Blog
      • Active Record
        • Project: Upvote
      • Forms
        • Cookies, sessions, and authentication
        • Project: Password
      • Advanced forms and Active Record
        • Associations
        • Project: Private Events
        • Callbacks
        • Menus, helpers and nested forms
        • Project: Ticket agent
      • APIs
        • External APIs
        • Project: Animals
        • Project: Photo widget
      • Mailers
        • Project: Confirmation
      • Advanced topics
        • Action Cable
      • Project: Social network
      • Next steps
  • Getting hired
    • Preparing to find a job
      • Plan a strategy
      • What companies want
      • Get yourself together
      • How to prepare
      • Project: Make your website
    • Applying and interviewing
      • Qualifying leads
      • Project: Make your resume
      • Applying for jobs
      • Preparing for an interview
      • Handling an offer
      • Final words
  • Maintained by
    • wbnns
  • License
    • CC BY-NC-SA 4.0 © 2022
Powered by GitBook
On this page
  • Introduction
  • Assignment
  • Additional resources
  1. Deep dives
  2. Ruby

Project: Mastermind

Learn how to build a Mastermind game from the command line where you have 12 turns to guess the secret code.

PreviousProject: Tic Tac ToeNextSerialization

Last updated 4 years ago

Introduction

If you've never played Mastermind, a game where you have to guess your opponent's secret code within a certain number of turns (like hangman with colored pegs), check it out on . Each turn you get some feedback about how good your guess was -- whether it was exactly correct or just the correct color but in the wrong space.

Assignment

Build a Mastermind game from the command line where you have 12 turns to guess the secret code, starting with you guessing the computer's random code.

  1. Think about how you would set this problem up!

  2. Build the game assuming the computer randomly selects the secret colors and the human player must guess them. Remember that you need to give the proper feedback on how good the guess was each turn!

  3. Now refactor your code to allow the human player to choose whether they want to be the creator of the secret code or the guesser.

  4. Build it out so that the computer will guess if you decide to choose your own secret colors. You may choose to implement a computer strategy that follows the rules of the game or you can modify these rules.

  5. If you choose to modify the rules, you can provide the computer additional information about each guess. For example, you can start by having the computer guess randomly, but keep the ones that match exactly. You can add a little bit more intelligence to the computer player so that, if the computer has guessed the right color but the wrong position, its next guess will need to include that color somewhere.

  6. If you want to follow the rules of the game, you'll need to research strategies for solving Mastermind, such as this .

Additional resources

This section contains helpful links to other content. It isn't required, so consider it supplemental for if you need to dive deeper into something.

  • Not directly helpful, but here are some for fun.

Wikipedia
post
Ruby game libraries